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The thermocapillary migration of a fluid particle in a tube, owing to an imposed axial 
temperature gradient, is studied theoretically for the case of steady, axisymmetric, 
creeping, translation in the absence of thermal convection and fluid particle 
distortion from sphericity, and for an insulated tube. Formulated with these 
assumptions, the migration is a linear Stokes flow which is separable into two fixed- 
fluid particle flow idealizations. One is the fluid motion in a quiescent continuous 
phase, owing only to the thermocapillary surface stress. This stress causes fluid 
streaming which exerts a lift force on the fluid particle in the direction of the warmer 
fluid described by a lift coefficient. The second idealization is uniform flow in the 
absence of thermocapillary forces. The force on the fluid particle owing to this flow 
represents the hydrodynamic resistance to the forward motion of the fluid particle in 
the presence of the tube wall, and is described in terms of a drag coefficient. 
Numerical solutions for the lift and drag coefficients are obtained by a boundary 
collocation technique. 

The migration velocity in the tube relative to that under identical conditions in an 
infinite medium is computed from the ratio of the lift and drag coefficients. The 
calculations show that for a fixed ratio of the sphere to the tube diameter, as the 
conductivity of the fluid particle phase decreases relative to that of the continuous 
phase, a greater proportion of energy is conducted through the gap between the 
insulated tube wall and the fluid particle. This conduction pattern creates a larger 
surface temperature gradient, and causes the relative migration velocity to increase. 
The enhancement in migration for decreasing fluid particle conductivity at a fixed 
ratio of the sphere to the tube diameter becomes more pronounced as the later ratio 
increases and the surface gradient intensifies. However, as the gap distance between 
the sphere and the tube decreases, hydrodynamic retarding forces develop, and these 
forces are overriding in the sense that the relative migration velocity in the tube 
decreases monotonically from the value of one as the gap thickness decreases, and 
therefore the migration velocity in the tube never exceeds the value in an infinite 
medium. 

1. Introduction 
Gas bubbles or liquid droplets situated in a thermally stratified continuous liquid 

phase migrate in the direction of increasing temperature. The physicochemical basis 

t To whom correspondence should be addressed. 
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for this migration is the decreasing dependence of the interfacial tension of the fluid 
interface of the bubble or drop on the temperature. As the fluid particle contacts the 
imposed thermal gradient of the continuous phase, one end of its surface becomes 
warmer than the opposite end. The surface tension at the warmer end is reduced 
relative to that a t  the cooler end, and an interfacial tension gradient or Marangoni 
force is created which tugs the interface in the direction of the cooler pole. This action 
creates in the exterior phase an opposing tangential viscous shear traction as it forces 
a streaming of the continuous phase liquid immediately adjacent to the interface in 
the direction of the cooler end of the fluid particle. The fluid streaming causes a 
higher pressure to develop just beyond the cooler end (relative to the pressure a t  the 
warmer end) which opposes the flow and preserves an undisturbed state a t  extended 
regions away from the fluid particle. The actions of the opposing tangential shear and 
the higher pressure a t  the cooler end provide a lift force which drives the fluid particle 
through the continuous liquid in the direction of the higher temperature. At steady 
state, the lift force is balanced by the pressure and viscous shear forces acting on the 
fluid particle which retard the forward motion. 

A theoretical study of the thermocapillary migration of a single gas bubble in an 
unbounded continuous phase was first undertaken by Young, Goldstein & Block 
(1959), neglecting fluid inertia (low Reynolds number, Re) and the convective 
transport of energy (low PBclet number, Pe). I n  these limits the spherical shape is an 
exact solution of the governing equations, and thus no restriction on the capillary 
number (Cu), the ratio of the magnitudes of distending tractions to the surface 
tension force, need be imposed. This fundamental solution has been corrected to  
examine the influences of finite inertia and the convective transport of heat. 
Inclusion of these effects leads to deformation, and this subject has been studied 
generally for droplets asymptotically in Ca, Re and Pe by Bratukhin (1976), 
Thompson, DeWitt & Labus (1980), Balasubramanian & Chai (1987) and Hariri, 
Nadim & Borhan (1990). The effect of the convective transport of energy for the 
single fluid particle problem were studied for a spherical geometry (zero capillary 
number) and negligible inertia asymptotically for small Pe by Subramanian (1981, 
1983) and numerically for order one Pe by Shankar & Subramanian (1988). These 
latter results established that the convective transport of energy reduces the surface 
temperature gradient on the fluid particle surface and thereby reduces the migration 
velocity. Recent advances on the single fluid particle problem have examined the 
retardation in thermocapillary migration owing to the adsorption of an insoluble 
surfactant monolayer on the drop surface (Kim & Subramanian 1989a, b ;  Nadim 
& Borhan 1989). 

I n  terrestrial environments, the influence of the thermocapillary force on the 
motion of a fluid particle subject to a temperature gradient is usually unimportant 
because the magnitude of the thermocapillary force is much less than the 
gravitational force arising from particlecontinuous phase density differences. 
However, thermocapillary forces can become dominant in microgravity environ- 
ments, and the emergence of the possibility of fluids material processing in the 
reduced gravity environment of an orbiting spacecraft in near free-fall has focused 
increasing attention on thermocapillary migration of bubbles and drops. Some 
examples of materials processing where thermocapillary fluid particle migration is 
expected to  play a significant role are the often cited high technology glass 
manufacture (Weinberg 1978) and miscibility gap alloy solidification (Bergman et al. 
1982). As described by Weinberg (1978), high technology glass is most favourably 
manufactured from its melt in a containerless cooling process where impurities 
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cannot leach from the bounding container, and the container cannot serve as a site 
for heterogeneous nucleation. However, although a microgravity environment easily 
allows for such processing, bubbles created in the glass melt in the absence of 
buoyancy remain suspended and are incorporated in the h a 1  product. Thermo- 
capillary migration has been suggested as a means for removal of these bubbles. In 
miscibility gap solidification, equilibrium liquid alloy mixtures consisting of droplets 
of one composition dispersed in a continuous phase of another can be formed because 
of the miscibility gap in the phase diagram. In the absence of buoyancy effects, 
cooling of this mixture can ultimately result in the formation of a composite solid 
material consisting of grains of one composition uniformly interspersed in a solid of 
another composition. However, the quality of the product will be affected by 
thermocapillary induced migrations which may reduce the uniformity of the grain 
structure. 

To understand the behaviour of thermocapillary migrations in the more complex 
space processing applications where fluid particle swarms move in the vicinity of 
fluid or solid boundaries, it is necessary to begin to study and calculate in a 
fundamental way migration velocities of particles in the presence of the boundaries 
of other particles or walls. This is an involved subject because the migration velocity 
of a fluid particle in the presence of a boundary is determined not only by the 
hydrodynamic resistance the boundary offers to the forward motion of the particle, 
but also the corresponding thermal interactions between these bodies since these 
determine the temperature distribution on the fluid particle surface which drives the 
migration. 

Fluid particleparticle, and fluid particle-wall boundary interactions in the 
context of thermocapillary migration have been studied for several geometries. 
Meyyappan, Wilcox & Subramanian (1981) examined the quasi-static movement of 
a spherical gas bubble perpendicular to an isothermal fluid or solid plane for zero Pe 
and Re. Solutions for the temperature isotherms demonstrated that the temperature 
gradient along the bubble surface decreases as the fluid particle approaches the wall. 
This behaviour, taken together with the increasing hydrodynamic retardation as the 
fluid particle approaches the wall, causes the migration velocity to decrease from the 
value in an infinite medium. Ascoli & Leal (1990) re-examined this problem for the 
case of order one capillary numbers and a solid surface, and found that bubble 
flattening 8.9 the fluid particle comes within a diameter or so of the wall causes the 
terminal velocity to be greater than the spherical value, but still less than the value 
in an infinite medium. The corresponding problem of a liquid drop of finite 
conductivity moving normal to a plane surface was studied by Barton & 
Subramanian (1990) and Chen & Keh (1990) for spherical bubbles and negligible 
inertia and thermal convection, and Ascoli & Leal (1990) under the same assumptions 
except allowing deformation. The results for the migration velocities can be 
significantly different from those for the migration of a bubble, and these differences 
illustrate the important role played by the thermal interaction. Both Barton & 
Subramanian and Chen & Keh determined that when the conductivity of the 
surrounding medium is less than the drop phase, the temperature gradient on the 
drop surface increases as the fluid particle approaches the wall. Both studies found 
that for the case of a fluid wall, as the droplet approaches the wall, the increase in 
the temperature gradient offsets the increasing hydrodynamic retardation, and the 
fluid particle velocity increases from its value in an unbounded region. 

Other studies have examined problems similar to those above in which the 
hydrodynamic and thermal interactions occur normal to the direction of motion. 
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Meyyappan, Wilcox & Subramanian (1983) investigated numerically the rectilinear, 
quasi-static movement of two unequal sized spherical bubbles along their line of 
centres, again for negligible inertia and thermal convection. From the results, 
Meyyappan et al. developed a useful rule for approximately predicting the migration 
velocities for separation distances that are not very small compared to the fluid 
particle diameters, and this rule allows for a qualitative understanding of the thermal 
and hydrodynamic interaction for the two fluid particle case. For each sphere, the 
migration velocity may be approximately obtained by summing two terms. Consider 
the calculation for sphere a separated by a centre-to-centre distance d from sphere 
b,  with both spheres subject to a far-field temperature gradient ( V ’ T ) m .  The first 
term in the approximation is the velocity of a owing to  the streaming motion induced 
by the isolated migration velocity of b. The second is the thermocapillary migration 
velocity of a in an infinite medium subject to  a far-field temperature gradient equal 
to the local gradient which exists a distance d from b ,  when b is isolated and subject 
to (V’Y),. Since, for a bubble, this local gradient is smaller than (V’Y), owing to  
the distortion in the isotherm field caused by b,  this elementary approximation 
for the thermal interaction reduces the motion of a relative to  its value in an infinite 
medium. Meyyappan et al. found that for the smaller fluid particle, the streaming of 
the larger fluid particle acting on the smaller one overcompensates for the reduction 
in the terminal velocity owing to the thermal interaction, and the fluid particle 
moves faster than when isolated. For the larger fluid particle, since the streaming 
motion due to the smaller fluid particle is not as large, the thermal interaction 
dominates and slows the fluid particle down from the infinite medium value. For 
equal sized spheres, these effects cancel in this approximation, and the fluid particles 
move with isolated velocities, a result confirmed for all separation distances 
numerically by Meyyappan et al. and analytically by Feuillebois (1989). This 
heuristic approximation has also been used in studying the normal interaction 
problem of the eccentric thermocapillary migration of a bubble moving in a spherical 
drop along whose surface a temperature gradient is imposed (Shankar, Cole & 
Subramanian 1981 ; Annamalai et al. 1982; Shankar & Subramanian 1983). This 
eccentric motion was reconsidered by Morton, Subramanian & Balasubramaniam 
(1990) for the more general case in which the inside fluid particle is a drop, and the 
outside drop is placed in a temperature gradient and its surface temperature is 
determined by solving the conduction problem of one drop embedded inside another. 
The problem of two gas bubbles moving rectilinearly along their line of centres has 
been generalized to include the influence of droplet viscosity in an exact treatment 
by Keh & Chen (1990). Meyyappan & Subramanian (1984), using a far-field 
technique, constructed approximate solutions for the thermocapillary motion of two 
bubbles moving with an arbitrary orientation with respect to  each other. Anderson 
(1985) reconsidered this problem for the case of droplets, and constructed 
approximate solutions using the method of reflections. 

The aim of this paper is to  examine lateral boundary interactions in thermocapillary 
migration by studying theoretically the movement of a drop situated in a liquid-filled 
tube and subject to an axial temperature gradient. The simplest case is adopted of 
a spherical drop in steady, axisymmetric, inertialess motion along the tube 
centreline. Thermal convection is neglected, and the tube wall is assumed to be 
insulated. The assumption that the fluid particle remains spherical requires that 
tractions which are exerted on the fluid particle by the continuous phase, and which 
tend to deform the drop and stretch it in the flow direction, are much smaller than 
the effects of surface tension forces which tend to keep the drop spherical. The ratio 
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of the magnitudes of these distorting tractions to  the force of surface tension is the 
capillary number, and is defined here as p’(2)U’/a’, where U’ is the fluid particle 
velocity, ,P) is the continuous phase viscosity and u‘ is the interfacial tension 
between the droplet and continuous phases. This number must remain much smaller 
than one in order for the fluid particle to retain a spherical shape. The deformation 
will follow that which has been generally observed for the motion, a t  low capillary 
number, of fluid particles in a tube owing to  an external applied force or a far-field 
Poiseuille flow (Wang & Skalak 1969; Martinez & Udell 1990). The drop elongates in 
the direction of the flow, and develops a tail a t  the trailing edge. Distortions from a 
spherical shape at low capillary number in thermocapillary migration have been 
examined by Ascoli & Leal (1990) for the case of migration towards a plane wall. 

There are several reasons for undertaking this investigation. First are the obvious 
applications to fluids material space processing involving bubble or drop motion in 
cylindrical geometries such as solid-walled tubes and containerless liquid filaments. 
The operations of the space vehicles themselves can also involve directly the motion 
of fluid particles in tubes, as, for example, the presence and movement of bubbles in 
fuel lines. (In this case, however, the present analysis may be only qualitatively 
useful since Reynolds and thermal PBclet numbers may not be small owing to  the 
effects of imposed flows.) More importantly, results from this study are a necessary 
first step in developing cylindrically symmetric, periodic array type theories for the 
motion of droplet swarms. Finally, by taking the tube wall to be insulated and 
neglecting thermal convection, the posed problem represents an excellent model for 
studying the competition between strong thermal and relatively weak hydrodynamic 
wall-fluid particle lateral interactions. Since the tube wall is insulated, axial 
conduction around a fluid particle of relatively low conductivity will generate large 
temperature gradients on the fluid particle surface. These gradients will enhance the 
migration velocity, although their action will be retarded by the hydrodynamic 
interaction of the fluid particle with the tube wall. The thermal enhancement and 
hydrodynamic resistance increase as the sphere to  tube diameter increases. Resolving 
which effect is overriding at small particlewall gap thicknesses is a central goal of 
this study, and is an important question to  resolve before determining migrations of 
closely packed bubble swarms. 

For lateral motion, this question of competition between thermal and hydro- 
dynamic interaction has not been fully examined. Meyyappan & Subramanian (1987) 
studied the motion of a spherical bubble parallel to a plane solid wall for negligible 
inertia and thermal convection, and found that the velocity decreased relative t o  the 
isolated value for parallel motions close to the wall. In  this case resistance to heat 
transfer through the particle-surface gap should enhance the migration velocity. 
Nevertheless, the result indicates that the hydrodynamic resistance is overriding. It 
should be noted, however, that  the far-field temperature gradient was imposed on the 
wall. Hence the wall was not insulated, and therefore heat can be conducted through 
it. I n  addition much of the energy can be conducted around the side of the fluid 
particle away from the wall rather than through the gap. Both of these factors 
act to reduce the surface temperature gradient and explain the dominance of 
hydrodynamic resistance. The tube geometry adopted in this study, because it does 
not have these mitigating factors, is a more appropriate model for assessing strong 
thermal interaction. The only study undertaken for thermocapillary migration in a 
cylindrical geometry was that of Hasan & Balasubramaniam (1989), who studied the 
motion of a long gas slug in an isothermal tube owing to an axial temperature 
gradient. An approximate solution for the migration velocity was obtained based on 



410 J .  Chen, 2. Dagan and C .  Maldarelli 

a lubrication solution of the hydrodynamic equations in the thin-film region 
surrounding the cylindrical portion of the bubble, and an overall force balance to 
calculate the pressure gradient in the film. The approximate result for the migration 
velocity decreases as the gap thickness between the slug and the tube wall decreases, 
again indicating the dominance of hydrodynamic interaction for the isothermal wall 
case. 

This paper is divided into three major sections. In the first ($2), the fluid 
mechanical and thermal field and boundary equations are detailed ($2.1), and the 
numerical solution technique is described (Ss2.2 and 2.3). Numerical solutions are 
obtained by a boundary collocation procedure (Leichtberg, Pfeffer & Weinbaum 
1976) in which general analytical solutions to the Stokes and Laplace equations 
which satisfy the tube-wall conditions exactly are developed, and made to satisfy the 
fluid-particle surface conditions at  discrete points on the surface. The results are 
detailed in $3 in three parts. The first ($3.1) presents the solutions for the conduction 
problem in terms of temperature isotherms, and graphs of the surface temperature 
distribution and pole temperature difference. The second section describes hydro- 
dynamic results. This linear-Stokes-flow problem is separable into two fixed-fluid 
particle flow idealizations, one in which a uniform flow from infinity streams over the 
fluid particle in the absence of a thermocapillary force, and a second in which the 
thermocapillary stress causes fluid streaming in closed convection cells with no flow 
far away from the particle. Each idealization contributes a force on the particle, and 
in $3.2, these forces are described as a function of force coefficients which are 
presented graphically in terms of the conductivity and viscosity particle-continuous 
phase ratios, and the sphere to tube diameter quotient. The terminal velocity relative 
to that of an isolated fluid particle is determined by the ratio of the force coefficients, 
and in $3.3 the relative velocity is detailed as a function of the fluid particle to tube 
diameter ratio and conductivity and viscosity ratios. From these results, conclusions 
are drawn as to whether thermal or hydrodynamic effects become overriding as the 
gap thickness decreases. The paper ends with a summary ($4). 

2. Formulation and solution procedure 
2.1. Thermal and hydrodynamic field equations and boundary conditions 

The problem is formulated in a reference frame which is fixed to the particle, and 
which is therefore moving with a uniform velocity U' relative to the stationary 
laboratory frame. In this paper, dimensional quantities are marked by a prime, and 
dimensionless quantities are unprimed. In the moving frame, cylindrical (p', w, z') 
and spherical coordinates (r', 8, #) are located with the origins of both systems taken 
to be at  the fluid particle centre, and the 2'-axis of the cylindrical system coincident 
with the tube centreline (see figure 1). Note that in this fluid particle fixed frame the 
wall is moving in the 2'-direction with velocity - U'. The radius of the fluid particle 
and of the tube are denoted, respectively, by a' and b'. Droplet and continuous phase 
variables are denoted by superscripts (1) and (2) respectively. Finally, viscosities and 
thermal conductivities are denoted by ,!L'(~) and k'@), and the ratios of the droplet to 
the continuous phase viscosity and conductivities are denoted by K and k 
respectively. The temperature gradient is imposed in the laboratory frame. Far from 
the drop, in the lab frame, the temperature field is of the form T'(c) = (V'T'), 6 + Th, 
where T' denotes the temperature, (V'T), denotes the imposed gradient, and 6 is the 
lab frame cylindrical axial coordinate. This coordinate is related to the fluid particle 
fixed axis coordinate z' by z' = 6'- U't'. Thus in the moving frame the temperature 
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field far from the drop is given by T ( z ’ )  = ( V ’ T ) ,  z’ + ( V ’ T )  U’t’ + To. The dependence 
of the surface tension u‘ on the temperature is assumed to be linear, and the constant 
gradient is denoted by aa’/aT‘. Non-dimensionalizations are formulated using the 
following scalings: spatial coordinate variables r’, z’ and p’ are scaled by the fluid 
particle radius a’; velocities are scaled by U0, the terminal velocity for the case in 
which the walls are infinitely far away and the fluid particle therefore translates in 
an infinite medium. This velocity is given by Young et al. (1959) as 

U ’ - -  a’( ad/aT)’( V’T’) , 
O - p u ” y l + & 4 ( 2 + k )  . 

A non-dimensional temperature field O(*)(z, p )  measured in the moving system is 
defined as: 

O@)‘(z,p) = ( T ( t ) ( z , p ) - ( V ’ T ) ,  U’t’-To)/(a’(V’T),). 

Note that this field must tend to + z  as z-+ 00. When the thermal equations are 
cast in non-dimensional form using @(z, p ) ,  it can easily be shown that @(*)(z, p )  is 
antisymmetric with respect to z for all p. Therefore W ( z  = 0 , p )  = 0 and the 
dimensional temperature along the equatorial plane is equal to (V’T), U’t’ + To. 
Since the non-dimensional temperature field is antisymmetric with respect to z, the 
Marangoni force, which is proportional to (tl@(*)/a6) ( r  = 1) = cos 8 (i38(c)/i3p) ( r  = 
1)-sin8(Wi)/az)(r = 1) is an even function of z. Hence the velocity field is 
symmetric with respect to the sphere equator : VF)(p,  z )  = - V:)(p, - z ) ,  and V$‘)(p, z )  

In formulating the energy conservation equations, thermal convection is neglected 
= Vi*)(p, -2). 

14 FLM 233 
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under the assumption of small PBclet number, and Laplace's equation describes the 
temperature field a t  steady state : 

v2@0 = 0. 

The boundary conditions on the temperature fields arc as follows: 

(2) 

(i) The tube wall, p = b'/a', is insulated: 

(ii) At the bubble surface, r = 1,  the heat flux and temperature are continuous 
across the interface : 

( 5 )  Q(1) = @(2). 

(iii) Far from the bubble, the temperature field in the continuous phase is linear 
in z :  

lirn tY2) = z. (6) 
Izl+m 

(iv) At the centre of the sphere ( r  = 0), the temperature is finite. 
Since the hydrodynamic flow is axisymmetric and the fluids incompressible, non- 

dimensional velocities may be expressed in terms of a non-dimensional stream 
function $ ( i )  ( $ ( i )  = ~'( i ) / (a '2Uo)) .  Two representations of $@) are used, one in terms 
of cylindrical coordinates (p ,  z )  and one in terms of spherical coordinates ( r ,  8). These 
representations are related to the velocity fields as expressed in the respective 
systems by the following relations : 

For steady, creeping flows the Navier-Stokes equations in terms of the stream 
function is of the form 

E2(E2$(") = 0, (9) 

where E2 is the axisymmetric stream function operator. The definitions of this 
operator in cylindrical and spherical coordinates is given in Happel & Brenner (1973). 

For the velocity field the boundary conditions are : 

(i) At the bubble centre 
lim VP)  and lim V g )  exist. 

(ii) Far from the bubble, the velocity field is uniform 

r+o r+o 

lim Vt2) = - U 
Izl+m 

where U is the non-dimensional velocity of the fluid particle (U = U/Uo). 
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(iii) At the tube wall, p = b’/a’, the velocity is equal to the wall velocity: 

VS“’ = - u, (12) 

v y  = 0. (13) 
(iv) At  the surface of the bubble ( r  = 1) velocities are continuous, the normal 

velocity is equal to zero and the difference in tangential shear stresses is balanced by 
the Marangoni force : 

(14) vp, = p) 
vp, = V(2) = 0 

6 ,  

r 7 (15) 

It is important to note that since the tangential stress balance equation (16) has been 
non-dimensionalized using the infinite medium migration velocity (equation (l)), 
which itself is proportional to the constant surface tension gradient au’/a!l”, the non- 
dimensional tangential stress balance becomes independent of this gradient. 

2.2. Solution for the temperature field 
Owing to the neglect of convection, the energy equations (2)-(6) are independent of 
the velocity field, and may therefore be solved independently. In the fluid particle 
interior, the general solution to Laplace’s equation which is bounded at the origin (cf. 
consideration (iv) after equation (6)) may be formulated as an infinite series in 
Legendre polynomials. Since the temperature field is antisymmetric with respect to 
z, only odd Legendre polynomials are included in the series summation. Therefore: 

CO 

W ( r , 6 )  = C A,P,(cos6)rn (n odd), 
n-1 

where P,(cos 6) denote the Legendre functions. 
For the continuous phase, a general solution to  Laplace’s equation for @@) - z can 

be constructed by the addition of the general integral solution in cylindrical 
coordinates which is bounded as p+O, tends to zero as z + f  co and is odd in z, and 
the spherical coordinate solution which also disappears as r + co and is antisymmetric 
in 6 with respect to in: 

00 

@(2)(p, z, r ,  6) = C(t) I&) sin tz dt + B, P,(cos 6) r-(,+l) + z (n odd), (18) 

where I ,  is the modified Bessel functions of the first kind, and the restriction to odd 
indices in the Legendre expansion is due to the antisymmetry of the temperature 
field. Note that this construction satisfies the boundary condition at infinity 
(equation (6)). 

The technique used to obtain, from the boundary conditions (3)-(5)’ the constants 
A ,  and B, in the Legendre expansions and the function C ( t )  in the integral solution 
is described as follows. First, the zero flux boundary condition on the tube wall is 
satisfied exactly by using a Fourier sine inversion to solve for the unknown function 
C(t )  in terms of a Legendre expansion of the B, constants. Secondly, a multipole 
collocation technique is used to satisfy the boundary conditions on the surface of the 
drop. 

The spherical coordinates in the exterior phase solution may be rewritten in terms 
of cylindrical coordinates by using the transformations 6(p,  z )  = Arctan ( p / z )  (0 < 

1: n-1 

14-2 
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8 < x ) ,  cos 8 = z/(pz + 2); and r = (pz + 2);. By using this transformation in (18), the 
zero-flux boundary condition may be written in the form: 

tC(t) I,@) sin tz  dt 
a w  

aP 
O = -  

In  the above, the ratio b’/a’ is denoted by R. The function C ( t )  may be obtained from 
(19) by inverting and then integrating the inverse integral. The result is: 

where 

Integrating the above (Leichtberg et al. 1976) yields: 

and KO is a modified Bessel function of the second kind. By differentiating Q ,  with 
respect to p a final expression for C(t) may be obtained: 

W 

c(t) = C Bn Tn(Rt), 
n-1 

where T, = ( -  l)icn-1)(2/7rn!) tnKl(Rt)/ll(Rt). For a fixed t ,  the above series for C ( t )  
rapidly converges because of the n !  in the denominator. 

Substituting this solution for C(t) into (18) allows for the representation of the 
exterior phase solution to be written in the form: 

W 

W ( r ,  8 )  = x B, Tn(Rt) sin 8) sin (tr cos 8)  dt 
n=1 

00 + B,Pn(cos8)r-(nf1)+rcos8 (n  = odd). ( 2 1 )  

The thermal boundary conditions at the sphere surface r = 1 (equations (4) and 
n-1 

(5)) can be applied directly to  the solution forms given by (17) and ( 2 1 ) :  
m m 

k AmmPm(cos8) = ~ 0 ~ 8 -  x Bm(m+1)Pm(cos8) 
m = l  m-1 

+ B, 1: Tm (Bt) tIl (t sin 8) sin ( t  cos 8)  sin 0 dt 
m-1 

00 

+ x B, c“ T,(Rt) tIo(t sin 8) cos ( t  cos 8) cos 8 dt, ( 2 2 )  

m 

+ Z B, 1: Tm(Rt)Io(t sin 6 )  sin ( t  cos 8) dt. (23) 
m-1 
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The above two equations are in terms of the remaining unknown infinite sets of 
constants, A, and B,. It is important to note that when the expression for Tm(Rt) 
is inserted into the improper integrals appearing in the above two equations, the 
resulting integrands can easily be shown to be of order tm+iet(sin8-2R) (for (22)) or 
tm-tet(sin8-2R) (for (23)) as t -+ co and are bounded as t +. 0. Because of these properties, 
the improper integrals are readily seen to be convergent. Numerical integration was 
undertaken by using the integration package DQDAG from the IMSL Math Library. 
This routine only accepts numerical values for the upper and lower limits. The lower 
limit was set equal to a value of lo-*. A sufficiently large value of the upper limit was 
found so that for values larger than this one, the change in the value of the integral 
was negligible. The contribution from 0 to the lower limit was then estimated using 
asymptotic formulae for the integrand as t +. 0, and this estimate was then checked 
against the value of the integral to confirm that it was a small contribution. 

The constants A, and B, are determined from (22) and (23) by a multipole 
collocation technique in which these equations are satisfied at  M discrete points on 
the sphere surface, and the summations in the equations are truncated so as to 
include terms up to B2M-1 and A2M-l. The result is a set of 2M linear equations in 
terms of 2M constants which can be cast in the following way: 

2M-1 

k C {A, mPm (cos 0,) + B,[ (m + 1) P, (cos 0,) 
,--I 

2M-1 

- J: T, (Rt ) tIl ( t  sin 0,) sin ( t  cos 0,) sin 0, dt 

-Jy  T,(Rt) t lo ( t  sin 0,) cos(t cos 0,) cos Of dt]} = cos 0,, (24) 

f m  

C {A,P,(cos 0,) --B,[P,(cos 0,) + J T,(Rt)Io(t sin 0,) sin ( t  cos0,) dt]} = cos 0,, 

(25) 
where i denotes the collocation point ( i  = 1,2 , .  . . , M ) .  Note that because of the 
antisymmetry, collocation points need only be taken along the first quadrant of the 
sphere. The above set can be solved by matrix inversion to yield values for the 
constants A ,  and B,  up to index 2M- 1. As M is increased sufficiently, the values 
obtained for A, and B ,  by inversion of matrices of higher rank begin to converge, 
and the truncated expressions for the temperature field approach the exact solution. 

In this implementation of the collocation technique, the convergence criteria is 
based on incrementing M until a prescribed resolution is achieved for the temperature 
gradient on the surface of the drop. At  the level M ,  this gradient is given by the 
truncated expression : 

m-i  0 

2M-1 

(26) 
a w  
-(1,0,) = C A,[mzP,(z)-mP,~,(z)]/sin8,. ae m-1 

Convergence is formulated in this way because the gradient in the surface 
temperature is what determines directly the hydrodynamic flow field and terminal 
velocity. At each level in M ,  the surface temperature gradient is evaluated from the 
truncated expression at three degree intervals along the first quadrant of the drop 
from 0 = 0. These values are then compared with the surface temperature gradient 
at the same points on the sphere surface for the level M -  1, and the gradient field is 
deemed converged when the difference at  each angular location is less than %. 
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h a'lb' 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

M 4 6 6 6 8 10 12 14 16 
A" P 4 4 5 7 7 9 10 11 13 

TABLE 1. The number of collocation points necessary to  achieve the accuracy requirement for 

Am L 3 3 4 4 4 5 5 6 7 

the gas bubble ( K  = 0 and k = 1 .O x 

Example values of M necessary to satisfy this criteria are given on the first row in 
table 1 as a function of a'lb' for k = 1.0 x Note that as the ratio of the sphere 
to the tube diameter increases, M increases. As will be discussed in $3, for this case 
of a non-conducting sphere, the surface temperature gradient strongly increases with 
8 in the first quadrant as heat is conducted through the narrow gap between the 
sphere and tube wall, and more terms in the series expansion are necessary to 
describe this behaviour. 

Some final notes with regard to the implementation of the collocation procedure : 
an examination of the linear algebraic equations (24) and (25) shows that when the 
collocation points 8, = 0 and in are used the equations become linearly dependent. 
In order to overcome this difficulty, these points can be replaced by closely adjacent 
points, i.e. Oi = 0 - E and 8, = in - E .  The optimum value of E is 0.8" as established by 
Leichtberg et al. (1976). 

2.3. Solution of the velocity jield 
A general solution for the stream function of the droplet phase in spherical 
coordinates in which velocities are bounded at  the drop centre (consideration (i) 
preceding equation (11)) may be expressed in terms of an infinite series of 
Gegenbauer polynomials C?(cos 8) : 

W 

$(')(r, 8) = (Eg)rn  +Fg)rn+2) c$(cos 8 )  ( n  = even), (27) 
n-2 

where the restriction to even terms is a consequence of the flow field symmetry about 
the equatorial plane. For the continuous fluid, note first that the stream function 
must from (12) tend to :UpZ as IzI + 00 in order to match to the uniform flow. 
Denoting this uniform flow field by $ W ( p ) ,  solutions for $(2)- $,(p) must tend to zero 
as IzI + 00. General solutions which obey this far-field restriction may be constructed 
by the addition of the general cylindrical solution which is bounded as p + 0 and 
tends to zero as lzl+ 00 and the spherical solution which disappears as r + 00 : 

$(2) = ~ W ( P )  + [4) d l ( t P )  +w P210(tP)l  cos tz dt 
0 

00 

+ ( E : k n + l  + F f ) r - n + 3 )  C;i(cos8) ( n  even). (28) 

As was the case with the solution for the temperature field, the determination of the 
hydrodynamic constants and functions is undertaken by a two-step procedure in 
which the wall conditions are satisfied exactly by a Fourier inversion, and the 
conditions on the fluid particle surface are satisfied numerically at collocation points. 

The boundary conditions on the surface of the tube are given by (12)-( 13) ; in order 
to satisfy these conditions, explicit expressions for the velocity fields in the 

n=2 
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cylindrical system for the solution form given by (28)  are given first with the aid of 
the spherical-cylindrical coordinate transformation : 

V,(z,p) = - ~ ~ - ~ o m { A ( t ) t ~ o ( t ~ ) + B ( t ) [ p t l , ( t p ) t 2 l . o l ) o o s ( t z ) d t  

m 
P aP 

- x [EF’Gk(p ,z )+Ff)G:(p ,  z ) ] ,  ( 2 9 ~ )  
n-2 

V,(Z,P) = 1: [A(t )~, ( tp)+B(t)plo(tp)1tsin (tz)dt 

m 

+ x [Ef)G5,(p,  4 + F f ) G : ( p ,  4, (29b)  

where the functions G i ( p , z )  appearing in the above are detailed in the Appendix. 
From (12)  and (29a)  the following equation is obtained: 

1: { A @ )  tIo(Rt) +B( t )  [Rtl,(Rt) +2IO(Rt) ] }  cos ( t z )  dt 

m 

= - x [EL2)G’,(R,z)+Ff)GZ,(R,z)] .  (30)  
n-2 

From (13) ,  it is clear that the stream function a t  the wall is a constant; from the 
solution form of (28)  this constant is clearly equal to $,(p = R) and the integral and 
series summations must equal zero : 

m m 

[A(t)Rl,(Rt) +B(t)R210(Rt)]  cos ( t z )  dt = - [EL2)G3,(R, z ) + F f ) G 4 , ( ~ ) ] .  (31)  
J o  n=2 

By applying Fourier cosine integral inversions to  (30)  and (31) ,  A(t)  and B(t) can be 
expressed in terms of the constants E f) and F f) as follows : 

m \ 

n=2 

m } (32) 

J A(t)RIl(Rt)+B(t)R210(Rt) = - C [Ef)H3, ( t )+Ff’H4, ( t ) ] ,  
n-2 

where the functions H i ( t ) ,  i = 1 , 2 , 3 , 4 ,  are obtained by analytical integration 
(Leichtberg et al. 1976) and are detailed in the Appendix. The integrals which define 
the H i ( t )  functions are, like the corresponding conduction integrals, improper and 
divergent at the lower (zero) limit. However, by using asymptotic formulae, the 
divergence can be shown to be integrable, and the improper integral is convergent. 
In the numerical solution to follow, these integrals were once again evaluated using 
the IMSL’s DQDAG routine, and the integral limits were specified in a manner which 
was similar to that used for the conduction integrals. 

From (32) ,  A ( t )  and B(t) can be solved in terms of the unknown constants EL2) and 
F f ) .  Substituting this solution into (28) ,  the stream function can be expressed in 
spherical coordinates r ,  S in terms only of E f) and F f) : 

m 

$ ( 2 ) (  T ,  0) = $m(r,  0) + x [E‘,2)S k(r, 0) + F f)S i ( r ,  S ) ] ,  (33)  
n-2 

where the functions SP, are given in the Appendix. 
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Four unknown constants remain to be determined, E p), F p), E f),  and F !). Of the 
two pertaining to the solution for the drop stream function, one constant can be 
expressed in terms of the other by the condition that V r )  ( r  = 1,O) = 0. Eliminating 
FE) in this manner, the inner solution can be expressed as: 

By using the remaining hydrodynamic boundary conditions on the sphere surface, 
three simultaneous equations are obtained : 

2 
sin 8 

m 

- U sin 8 = C. [E f)L3:( 1,O) +Ff)S8,( 1 ,O)  +- E g)C;i(cos B ) ] ,  
n-2 

m aQ 
- Usin O+ (2 + k) (1 + $ K )  - (1 ,O)  = [E f)S’,( 1,8) + F  f)S:( 1,O) ae n-2 

2(2n- 1) K 

sin 0 
E t)C;i( cos O ) ]  . - 

The above equation set contains the remaining three infinite series of unknown 
constants, EF),  Ff)  and EF). Solutions for these constants from the above three 
equations are obtained by the same collocation procedure used for the temperature 
field, but there are a few important differences. Since the inhomogeneity in the above 
three equations consists of two separate terms, one a multiple of U and one a multiple 
of the fluid particle surface temperature gradient, the solutions for the constants may 
be decomposed into separate terms, one in which (a@/aO) (1,O)  = 0 and U is non-zero, 
and one in which U = 0 and the temperature gradient is non-zero. This decomposition 
reflects the linearity of the Stokes equations and boundary conditions. It also allows 
for the interpretation of the fluid particle movement due to the temperature gradient 
as the sum of two flow idealizations in the fluid particle fixed frame, one in which the 
temperature gradient is equal to zero and a uniform flow from infinity moves over the 
fluid particle (U  not equal to zero), and a second idealization in which the flow at 
infinity is zero, and a temperature gradient produces fluid streaming. 

The values for the constants for the first case of uniform flow are linear in U, and 
may therefore be solved generally by setting U = 1. These constants are denoted with 
a U subscript. As before, a collocation solution procedure is developed in which the 
above three equations are satisfied at  P points on the first quadrant, the infinite 
series are truncated at  n = 2P, and the 3P constants are obtained from the algebraic 
solution of the satisfaction of the three boundary conditions at P collocation points. 
The convergence criteria is formulated in the following way. It will be shown in the 
next section that (i) the terminal velocity is determined by the sum of the 
hydrodynamic forces exerted by the continuous phase on the fluid particle in the two 
flow idealizations, and (ii) this force is only dependent on Fi2) .  Since the aim of the 
study is the accurate computation of the terminal velocity, the convergence criteria 
is based on the accurate resolution of F i2). Thus the constant F i% is computed for P - 1 
and P collocation points, and the relative change in the constant is then obtained. 
The collocation number is incremented until the relative change is less than 
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Listed on the second line of table 1 are the values of P necessary for convergence for 
K = 0 as a function of a’/b’. The table indicates that the number of collocation points 
increases as the sphere to tube diameter increases. Although the hydrodynamic flow 
patterns will be examined carefully in the results section to follow, this trend is 
clearly a consequence of the fact that large &gradients in V p )  develop in the gap as 
a’lb’ increases in order to keep the overall flow rate in the z-direction constant, and 
more terms in the series expansion are necessary to describe accurately these 
gradients. 

In the second flow idealization, the fluid at  infinity is at  rest, and flow is only 
caused by the temperature gradient. Again using a collocation procedure for 
numerical solution, the constants are determined by truncating the infinite series at 
L terms and satisfying the three boundary conditions a t  L discrete points. (These 
constants are identified by an M subscript.) Convergence is based on the accurate 
determination of F!&, and the number of collocation points L necessary to achieve 
a resolution in this constant are given in the third line of table 1 for K = 0 and 
k = 1.0 x The table shows that more collocation points are necessary as the 
sphere to tube diameter increases. As will become clearer below, this trend results 
from the fact that the fluid streaming due to the Marangoni force creates recirculating 
eddies between the sphere and the tube wall, and as a’/b’ increases these eddies are 
squeezed and large 0 gradients develop which necessitate more terms in the series 
expansion. 

3. Results and discussion 
3.1. Temperature field 

Three separate presentations are given to illustrate the results for the non- 
dimensional temperature field @ ( “ ( ( P , Z ) ,  and the dependence of this field on the 
thermal conductivity and fluid particle to tube diameter ratios k and a’lb‘. In  the 
first presentation the temperature field isotherms are detailed. These are shown for 
the infinite system (a’/b’ = 0) in figures 2 (a)  (k = 1.0 x and 2 ( b )  (k = 5 ) ,  for 
a‘lb‘ = 0.5 in figures 3 (a )  (k = 1.0 x and 3 ( b )  (k = 5 )  and for a‘/b‘ = 0.9 in figures 
4(a) (k = 1.0 x and 4 ( b )  (k  = 5 ) .  The thermocapillary velocity is determined by 
the magnitude of the surface temperature gradient, (a@/ae) ( r  = 1,e). The final two 
presentations quantify this gradient by providing two different measures of 
(a@/a0) ( r  = 1,0). In figures 5 (for a’/b’ = 0.5) and 6 (a’/b’ = 0.9), (a@/a0) ( r  = 1,0) is 
plotted, as a function of 0, for different values of k. To facilitate comparison with the 
surface temperature gradient for an infinite continuous phase, plotted alongside the 
tube results in figures 5 and 6 are the infinite system gradients for the same value of 
k. In the second measure, the overall change in the surface temperature of a bounded 
droplet relative to the unbounded one is computed. This ratio is defined by @, and 
is given by : 

where, for the case of an infinite continuous phase, the difference between the 
temperatures at  the two poles is given by 6/(2 + k), and is obtained from the surface 
temperature distribution 

@ = (@(r  = 1,0 = 0 ) - @ ( r  = 1,0 = 7 ~ ) ) ( 2 + k ) / 6 ,  (36 )  

In  figure 7, @ is plotted as a function of a‘lb’ for different values of k. 
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FIGURE 2. Contour plot of the non-dimensional temperature isotherms (@(z ,p)  = C) for an infinite 
continuous phase subject to a far-field temperature gradient in the z-direction. The non- 
dimensional temperatures along the isotherms differ by a constant amount denoted by A@. (a) 
Isotherms around a gas bubble (k = 1.0 x A@ = 0.275 and (b) isotherms for a highly 
conducting liquid drop (k = 5), A@ = 0.22. 

Physical interpretation and discussion of the temperature results as given in 
figures 2-7 begins with the examination of the influence of the thermal conductivity 
ratio k. For the infinite system, if the conductivity ratio becomes just less than one, 
there is less resistance to conduction in the continuous phase, and a greater 
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FIQURE 3. Isotherm contour plot for a fluid particle to tube radius, a'/b', equal to 
around a gas bubble (k = 1.0 x A 9  = 0.275 and ( b )  isotherms for a highly 
drop (k = 5), A 9  = 0.22. 
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FIQURE 4. Isotherm contour plot for a fluid particle to tube radius, a'lb', equal to 0.9. (a) Isotherms 
around a gas bubble (k = 1 .O x A@ = 0.275 and (b) isotherms for a highly conducting liquid 
drop (k = 5), A@ = 0.22. 
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FIQURE 5. Comparison of the non-dimensional surface temperature gradient (a@/aB) ( r  = 1 , B )  as a 
function of B for different values of the conductivity ratio k, and for a fluid particle to tube diameter 
ratio, a'lb', equal to 0.5. Plotted alongside (the dotted lines) are the surface gradient for an infinite 
system and the same values of k. 
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0 (deg.) 

FIQURE 6. Comparison of the non-dimensional surface temperature gradient m a function of 0 for 
different values of the conductivity ratio k, and for a fluid particle to tube diameter ratio, a’lb’, 
equal to 0.9. Plotted alongside (the dotted lines) are the surface gradient for an infinite system and 
the same values of k. 

2.0 

1.5 

4 
1 .o 

0 0.2 0.4 0.6 0.8 

a ’ / b  

0 

FIQURE 7. Plot of @, the quotient of the difference in the pole temperatures 8 ( r  = 1,0)-8 ( r  = 1, 
n), for a fluid particle in a tube divided by that difference for a fluid particle in an infinite medium 
as a function of a’lb’ for different values of k. 
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proportion of the energy is conducted through the suspending phase. As a 
consequence of this heat flow pattern, the temperature isotherms beginning at p-f 
co and perpendicular to the z-axis bend towards the sphere (figure 2a). Therefore, 
relative to the case of k = 1 which represents a linear temperature field, the 
temperature difference between the poles and the temperature gradient along the 
sphere surface is increased (cf. the dotted lines in figures 5 and 6). As k decreases 
further from one, the temperature gradient and difference in pole temperatures 
continues to increase, as more heat is transported around the sphere. In the limit in 
which the conductivity of the sphere becomes equal to zero, all energy is conducted 
around the sphere and the isotherms intersect the fluid particle surface at right 
angles. The behaviour is reversed when k becomes just larger than one. A greater 
proportion of the energy is now transported through the sphere. The temperature 
isotherms starting at  infinity bend away from the sphere (figure 2 b )  and the pole 
temperature difference and surface temperature gradient are decreased relative to 
k = 1 (figures 5 and 6). As k increases further from one, the temperature difference 
between the poles decreases, and the gradient along the surface is uniformly reduced. 
In the limit in which the sphere becomes infinitely conducting, the sphere surface 
becomes an isotherm and only the equatorial plane isotherm intersects the sphere 
surface. In this case, as is evident from (37), the temperature gradient becomes equal 
to zero. 

In the confined geometry (figures 3 and 4), the effect of the conductivity ratio is 
similar to the behaviour explained above for an infinite expanse of a continuous 
phase. As is evident from figures 3(a)  and 4(a) for a non-conducting sphere (k = 
1.0 x isotherms (now originating at  the tube wall and perpendicular to it) bend 
towards the sphere to allow the heat to be transported through the more conductive 
continuous phase. Again as k decreases from one, the temperature gradient along the 
surface increases relative to the k = 1 distribution, and this is clearly shown in figures 
5 and 6 for a'/b' = 0.5 and 0.9, respectively. The more important point is how this 
increase in surface gradient compares with that realized for the infinite case. Figures 
5 and 6 indicate that as k decreases, the temperature gradient for the confined 
geometry increases more rapidly than the gradient for the infinite case. Thus for any 
particular value of k < 1, the surface temperature gradient is larger for the fluid 
particle in the tube than in an infinite amount of fluid. This central conclusion can 
be shown more clearly in terms of the @, the quotient in pole temperature differences. 
As detailed in figure 7, CP increases as k decreases from one. 

The reason why, for k less than one, the surface temperature gradient is larger in 
the tube than in an infinite medium can be understood very simply. Consider the 
isotherms for the infinite system figure 2 ( a ) ,  and superimpose onto this isotherm plot, 
a conceptual volume consisting of a tube of radius b' (>a') closed at  both ends and 
placed with its centreline coincident with the z-axis of the infinite system coordinates. 
The ends of the tube are located at a sufficiently large distance from the sphere so 
that at these ends the temperature gradient is unperturbed by the sphere and is 
therefore in the z-direction with magnitude (V'T')m. For z > 0, the surface which 
closes the tube is denoted by A,.  The amount of energy entering through A ,  is equal 
to k(2)(V'T)mlrb'2.  As figure 2(a )  indicates for k c 1, since the energy is transported 
around the sphere, there is a net flux of energy out of the inscribed boundary for the 
region above the equatorial plane. For the case of conduction in a tube, since the 
cylindrical portion of the tube boundary is insulated, no such heat loss occurs, yet the 
heat entering the tube is again k(2)(V'T'), nb". Consequently, for any cross-sectional 
area A ,  above the equatorial plane, the energy conducted through A ,  must be larger 
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in the tube than in the infinite geometry, and therefore the area averaged 
temperature gradient in the z-direction must be larger in the case of the tube. This 
increase in the z-component of the temperature gradient in the tube relative to that 
in an infinite medium accounts for the relative increase in the temperature gradient 
on the fluid particle surface. 

For the opposite case of k > 1, the isotherms of the finite system originating from 
and perpendicular to the tube wall bend away from the sphere (figures 3b and 4b) so 
that a greater proportion of energy is conducted through the less resistive sphere. As 
k increases from one, the temperature gradient along the surface decreases and this 
is shown in figures 5 and 6. This behaviour of course is qualitatively the same as that 
of the infinite system as described above. However, figures 5 and 6 show that for 
k > 1, the temperature gradient in the tube is reduced more than it is in the infinite 
system as k increases. This marked reduction, as k increases from one, in the 
Marangoni driving force compared to that realized in the infinite system is clearly 
evident in the graph of @, figure 7. 

The reason why, for k > 1, the temperature gradients along the surface of the 
sphere are less in the tube than in the infinite system can again be understood using 
control volume arguments. Specifically, consider the tube of radius b' superimposed 
on the isotherm contour diagram for the infinite system for k > 1 (figure 2b). The 
enclosing top surface of the tube is again denoted by A ,  and a representative cross- 
sectional area above the equator is identified by A,.  Energy is now conducted into 
the superimposed tube region for the infinite system case since the isotherms bend 
away from the sphere enabling more energy to pass through the sphere. Therefore the 
energy flux through A ,  must be larger in the infinite case than in the tube case 
because no energy can pass through the tube wall in the tube case. The temperature 
gradient in the z-direction is correspondingly greater, and this explains why the 
temperature gradient along the surface is larger in the infinite case. 

The last result to comment upon is the dependence of the isotherm contours and 
the surface temperature gradients on the sphere to tube diameter ratio. For k fixed 
and less than one, as b'/a' decreases, the isotherm contours of figures 2 (a ) ,  3 ( a ) ,  and 
4 ( a )  establish that the temperature gradient along the surface increases. When k > 
1,  the opposite behaviour is obtained. These results follow for the same reasons that 
for k < 1 the surface temperature gradient is larger in the tube than in an infinite 
system, while for k > 1 the gradient is smaller. 

To summarize the results for the temperature gradient along the surface: when 
k < 1, energy is conducted around the sphere. The surface gradient for a fluid particle 
in a tube is larger than the gradient on the surface of a fluid particle in an infinite 
medium, and this difference increases as b'/a' decreases. For k > 1, a greater 
proportion of the energy is transported through the particle. The surface gradient on 
the fluid particle surface is less than the gradient developed when the fluid particle 
is in an infinite medium, and the absolute value of this difference increases as b'/a' 
decreases. 

3.2. Hydrodynamic forces 
The hydrodynamic force in the z-direction (F i )  exerted by the exterior fluid on the 
drop or bubble is obtained by integrating the viscous traction and pressure forces 
over the fluid particle surface. The force may be expressed in the following form 
(Happel & Brenner 1973): 

where the constant F!j2) is obtained as part of the solution of the system of equations 
as given in (35). As outlined in the previous section, the flow and therefore the 

F i  = 47~a'p'(~)U;, F !j2), (38) 
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a’lb’ 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

A, 
1.000 
1.2632 
1.6795 
2.370 
3.591 
5.94 

11.09 
24.665 
74.567 

464.97 

Haberman & Sayre 

1.000 
1.263 
1.680 
2.371 
3.596 
5.970 

11.135 
24.955 
73.555 

A, 
Wang & Skalak 

1 .Ooo 
1.263 
1.680 
2.370 
3.592 
5.949 

A, 

11.10 
24.70 
74.97 

TABLE 2. Comparison of converged values of drag coefficients A, with the results of Haberman 
& Sayre (1958) and Wang & Skalak (1969) for a solid particle ( K  = lo8) 

hydrodynamic forces exerted on the fluid particle may be considered to be composed 
of the sum from two flow idealizations, one in which the temperature gradient is 
equal to zero, and the wall is moving creating a flow which drags against the particle, 
and a second idealization in which the wall is stationary and a Marangoni stress gives 
rise to fluid motion and a resulting lift force. The forces from each of these flow 
idealizations are discussed separately below. 

Consider first the drag exerted on the fluid particle by the exterior flow caused by 
the movement of the wall only. This idealization is described by (35) with the 
temperature gradient set equal to zero, and the dimensional drag is given by 

F:, = ~KU’,U’(~)U~ F fJ U. (39) 

The constant F !j’$ is obtained by the collocation procedure and is tabulated in terms 
of a drag coefficient A, which is defined as the ratio of the drag on the fluid particle 
in this idealization to the drag exerted by the fluid particle in an infinite medium with 
uniform flow of the same magnitude, U’. This latter drag is equal to 
- 4 ~ a ’ U ’ p ” ~ )  (1 + : K ) / (  1 + K )  (cf. for example, Happel & Brenner 1973) and therefore 
the drag coefficient is defined by: 

In  the second problem, the wall is stationary and the Marangoni force causes fluid 
streaming and an associated lift force. This idealization is described by (35) with 
U = 0, and the drag is given by: 

F:, = 47ca’p’(2) U 0 F 2M (2) 

= 4 ~ a ’ ~ F ? & (  -%) ( V ’ T ” ) J ( ( I + $ K ) ( ~ + ~ ) ) .  

The lift coefficient A, is defined as the ratio of this force Fg, exerted on the sphere 
in the tube divided by the lift force exerted on the sphere in an infinite, stationary, 
medium owing to the fluid streaming arising from a Marangoni force derived from an 
equal temperature gradient. The force in the infinite medium is equal to 
~ x u ’ ~ (  - a a ’ / a r ) ( V ’ r ) , / ( ( l + ~ )  ( 2 + k ) ) .  (Note that this lift force is balanced by the 
drag, - 4 x ~ ’ U ~ p ’ ( ~ ) ( l + % ~ ) / ( l  + K ) ,  which is due to’the forward motion of the particle, 
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Hyman & Skalak 
a‘lb‘ K A” A, 
0.1 0 1.1632 1.16 

0.5 1.1947 
1 .o 1.2111 1.211 
2.0 1.228 

0.2 0 1.3899 1.390 
0.5 1.4745 
1 .o 1.5209 1.520 
2.0 1.5703 

0.3 0 1.7251 1.725 
0.5 1.8957 
1 .o 1.995 1 1.995 
2.0 2.1059 

0.4 0 2.2626 2.263 
0.5 2.5714 
1 .o 2.7646 2.765 
2.0 2.992 

0.5 0 3.2223 3.222 
0.5 3.7559 
1 .o 4.1195 4.123 
2.0 4.5767 

0.6 0 5.2040 5.205 
0.5 6.1157 
1 .o 6.8064 6.808 
2.0 7.7475 

0.7 0 10.256 10.26 
0.5 11 332 
1 .o 13.216 13.22 
2.0 15.305 

0.8 0 28.553 28.59 
0.5 31.252 
1 .o 34.398 34.47 
2.0 39.864 

0.9 0 172.81 
0.5 173.05 
1 .o 182.19 
2.0 203.92 

TABLE 3. Comparison of converged values of drag coefficients A, with the results of Hyman & 
Skalak’s solution (1970) for a fluid droplet 

and (1) in fact follows easily by summing these forces to zero.) The lift coefficient A,, 
defined as the quotient of the actual Marangoni lift exerted in the tube divided by 
the lift in an infinite medium, is therefore given by: 

The calculations were checked by comparing values obtained for the drag 
coefficients to known values for certain limiting situations. Three verifications were 
done: first, the values for A, as a function of a’/b’ for a solid sphere (implemented 
here by setting K = lo8) were compared with the results of Haberman & Sayre (1958) 
and Wang & Skalak (1969) assuming a priori solid spheres (i.e. using the no-slip 
condition). This comparison is given in table 2, and it can clearly be seen that the 
coefficients obtained in this study are within 1 %  of those from the past studies. 
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FIGURE 8. Graph of the drag coefficient A, for the movement of the tube wall past a fixed fluid 
particle as a function of the fluid particle to  tube diameter ratio and for different values of the 
viscosity ratio, K .  

Additional verification of the A, calculations is obtained by comparing the results for 
a fluid sphere to  those of Hyman & Skalak (1970) (table 3). This comparison is shown 
in table 3 for values of K = 0 and 1 (the only two values studied by Hyman & Skalak) ; 
again the agreement is excellent. No previous studies have computed A,, and 
therefore the only way of checking these results is to verify that they properly 
converge towards one for all K and k as a’lb’ + 0. This behaviour will be evident in 
the graphs to be presented below. 

Converged values for A,  are plotted in figure 8, for respectively K = 0,0 .5 ,  1.0,2.0, 
and los (solid sphere) and for a range of a‘/b’ between 0 and 0.9. Figure 8 shows 
several interesting features. The figure indicates that A, increases as a’lb’ increases 
for fixed K .  The dimensional drag (FLU) in terms of this drag coefficient is equal to 
-47~a’p’(~’( (1 + g ~ ) / (  1 + K ) )  A ,  U’ and it represents the force exerted on a fixed sphere 
with the wall moving with a velocity U’. It can be concluded from figure 8 and the 
expression for FLU that for fixed viscosities and sphere diameter, the drag increases 
as the tube radius decreases. This increase in drag is due to the hydrodynamic 
interaction of the sphere with the wall : as the gap between the sphere perimeter and 
the tube wall decreases, the shear rate in the gap in the vicinity of the sphere 
increases. The sphere suffers a higher shear stress applied by the fluid, therefore the 
drag consequently increases. Also evident from figure 8 is the fact that the drag 
coefficient increases with K a t  fixed a‘lb‘. As a physical example, increasing K can be 
realized by varying the droplet viscosity with the continuous phase viscosity and the 
tube and fluid particle diameters held constant. For that case, the dimensional drag 
also increases since the factor (1 +$)I( 1 + K )  monotonically increases with K along 



Axisymmetric thermocapillary motion of a juid particle 429 

0 0.2 0.4 0.6 0.8 
a ' J b  

D 

FIGURE 9. Lift force coefficient A ,  for the Marangoni driven streaming motion of the continuous 
phase past a fixed sphere and a stationary wall as a function of a'lb' and for different values of the 
conductivity ratio k. The figure is for a viscosity ratio, I ( ,  equal to zero. 

with A,. The reason for the increase in dimensional drag is also clear; as the droplet 
viscosity increases, the sphere surface velocity decreases and this causes the shear 
rate in the vicinity of the sphere to increase, thereby increasing the drag coefficient. 

The converged results for A, as a function of a'/V are detailed in figure 9 for 
different values of the conductivity ratio k and K = 0, and in figure 10 for different 
values of the viscosity ratio K and k = 1.0 x Consider first the dependence on k, 
figure 9, and note the behaviour for k = 1. For equal thermal conductivities, figure 
9 indicates that A, is larger than one, and increases with a'lb'. Recall that when 
k = 1, the surface temperature gradient is identical to that for the infinite case, and is 
therefore independent of a'/b'. Thus the fact that the lift forces in the tube case 
become increasingly larger than those in the infinite case cannot be due to an increase 
in the surface Marangoni force. The reason for this behaviour may be attributed to 
the pressure differential which develops across the sphere. In the flow idealization 
which defines A,, the surface force drives, in the continuous phase, a streaming flow 
in the vicinity of the fluid particle interface in the negative z-direction. Since the wall 
is stationary, and the fluid at infinity is a t  rest, the net flow rate for this streaming 
flow in the z-direction must be equal to zero. Therefore downstream from the 
particle, pressure forces develop to turn the fluid around. As this pressure force acts 
in the positive z-direction it provides, along with the reaction to the surface 
Marangoni force, the lift which propels the droplet in the positive z-direction. As the 
tube diameter decreases, for a constant Marangoni force, the surface velocity and 
therefore the magnitude of the streaming flow decreases. However, the pressure force 
which drives the recirculation does not decrease because it must drive fluid through 
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loo 6 k = 1.0 x lo-’ 

A m  
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a ‘ l b  
FIGURE 10. Lift force coefficient A, as a function of a‘lb‘ for different values of the viscosity 

ratio, K ,  and k = 1 . 0 ~  

an increasingly smaller gap between the fluid particle and the tube surface. This fact 
is over-riding, and causes the pressure to  increase as the tube diameter decreases. 
This increase in pressure manifests itself as an increase in the lift force, and explains 
why A,= is larger than one for k = 1, and increases with a’lb‘. 

Consider next the dependence of A, on the conductivity ratio k. Figure 9 shows 
that as k decreases from one, A, increases and as k increases from one, A m  decreases. 
This effect can be understood completely in terms of the influence of k (at fixed a‘lb’) 
on the surface temperature gradient as discussed in 53.1 (cf. figures 5-7): as k 
decreases from one, the surface temperature gradient in the tube geometry becomes 
increasingly larger than that which develops on a fluid particle in an infinite medium, 
and therefore A,, which is the ratio of the lift forces in the tube and infinite 
geometries, increases. Similarly, as k increases from one, the surface temperature 
gradient for the fluid particle in a tube decreases relative to the infinite medium 
value, and A ,  decreases. Note finally that since the dimensional lift force, F;,, is 
equal to - 4 x c d 2 ( ~ ~ / W )  (V’T‘), A m / ( (  1 + K )  (2  + k)), for fixed fluid viscosities and 
sphere and tube diameters, the dimensional lift force increases as k decreases. 

Consider next the dependence of A, on a’lb’ for k not equal to one. Figure 9 shows 
that for all k, A, increases with a’lb’. Significantly, this increase is enhanced as k 
decreases. Reasons for this behaviour may be attributed to two effects, the back 
pressure which develops to recirculate the fluid and which increases with a‘lb’, and 
the influence of a’/b’ on the surface temperature gradient (figure 7) .  When k < 1, the 
surface temperature gradient increases as a’/b’ increases. This causes larger 
Marnngoni stresses which act to increase the lift force. In  addition, the back pressure 
increases because the gap thickness decreases. Thus A, should increase rapidly. For 
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FIGURE 11.  Graph of the ratio (y3 of the lift force F:, for a particular value of K divided by 
that force for K = 0 as a function of a’lb’ and k = 1 .O x lo-’. 

k < 1,  these two influences have opposite effects. Although the back pressure 
increases with a’lb‘, the surface Marangoni force decreases (figure 7) .  However, as 
was the case with k = 1, the effect of the decreasing gap size on the back pressure is 
dominant, and A, slowly increases with a’lb’. 

The dependence of A, on the fluid viscosity ratio K is given in figure 10,  and this 
figure indicates that for a fixed a’lb’, A, increases with K .  To understand this 
dependence, consider first how the dimensional lift force behaves with K for a fixed 
continuous phase viscosity and fluid particle radius a’. The dimensional lift (F;,), is 
plotted in figure 11,  as a function of K ,  for k = 1 .O x lop5 as a function of K ,  divided 
by the lift for the same a’lb’ and K = 0. This quotient, which is equal to A,(K, k = 
1.0 x lop5, a’/b’)/A,(K = 0, k = 1 0  x a’lb’) is defined as Y. Figure 11 indicates 
that as K increases, Y and consequently the dimensional lift decreases. As K increases, 
the velocity on the surface owing to the Marangoni force (which is independent of K )  

decreases, and this causes the lift force to decrease. Reconsider figure 1 0 :  
mathematically, the reason why A, increases with K at fixed a’lb’ is that, as is 
evident in figure 11 (for k = 1 . 0  x the dimensional lift in the tube does not 
decrease as fast with K as that for an infinite medium (the latter varies as (1  + K ) - ’ ,  

and corresponds to the curve labelled a’/b‘ = in figure 11) .  Physically, this 
behaviour reflects the fact that in the infinite medium at finite K ,  the droplet stress 
which retards the surface force is a larger percentage of the total retarding force 
(outside and inside) than it is in the confined geometry. The reason for this is that 
the lengthscale for the relaxation in the velocity in the unbounded geometry is much 
larger than in the confined one. When the interior viscosity is increased, the droplet 
stress is increased, and to maintain a constant surface force, a reduction in the 
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FIQURE 12. The ratio of the migration velocity in a tube to that in an infinite medium, lJ'/Uo, as 
a function of a'lb' for (a) K = 0 and different values of k and (b)  k = 1.0 x loT5 and different values 
O f  K .  
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surface velocity (relative to its previous value) is necessary. This reduction is larger 
in the unbounded than in the bounded case since the droplet stress is a larger 
component of the total retarding shear stress. Thus the proportional change in the 
drag is more for the unbounded case, and A, increases with K .  

3.3 .  Terminal velocities 

The total force on the fluid particle (Fg,+FL,) is equal to zero. This requirement 
allows the fluid particle velocity U' to be computed; using (39)-(42), U' may be 
expressed relative to the speed in an infinite medium (Uo) through the drag and lift 
coefficients A, and A, : 

This equation clearly illustrates the competing effects which determine the relative 
speed : The enhancement of the Marangoni lift force relative to the infinite value, A, 
(figures 9 and l o ) ,  acts to increase the relative speed, while the enlargement (relative 
to the infinite system) of the drag force owing to the forward motion, A, (figure 8),  
retards the relative speed. The result of these competing effects is shown in figures 
12(a) and 12(b) which graph U'/Uo as a function of a'lb' for different values of k 
(figure 12a) and K (figure 12b). The principal observation from these graphs is that 
U'/Uo is always less than one, and is a monotonically decreasing function of a'lb' for 
all values of the conductivity and viscosity ratios. Hence, with increasing a'lb', the 
increased drag due to the hydrodynamic interaction of the fluid particle with the 
tube wall dominates the increase in the Marangoni lift force, and the fluid particle in 
the tube always moves slower than it does in an infinite medium. A t  a fixed ratio of 
the diameter of the fluid particle to that of the tube, the dependence of U'/Uo on k 
and K follows directly from the dependencies of A, and A, on these variables. Consider 
first the behaviour with k : the drag coefficient A, is independent of k. The Marangoni 
lift coefficient, A,, increases with decreasing k as a greater proportion of the energy 
from infinity circumvents the fluid particle and creates a high surface-temperature 
gradient allowing the energy to pass through the narrow gap. Therefore, as indicated 
in figure 10, the relative speed increases with decreasing k. The dependence of U/Uo 
on K at fixed a'lb' is more complicated. In this case, although both A, and A, increase 
with K ,  comparison of figures 8 and 10 indicate that the effect of the viscosity ratio 
on A, is greater than that on A,. Hence, as demonstrated in figure 12 (b) ,  the relative 
velocity decreases as the viscosity of the fluid particle becomes larger than that of the 
continuous phase. 

4. Conclusions 
This paper has examined the steady, creeping, thermocapillary migration of a 

spherical fluid particle in a tube owing to an imposed axial temperature gradient 
under conditions of axisymmetry, negligible thermal convection and an insulated 
tube wall. As outlined in Q 1 ,  the intention of this study is to use this flow geometry 
as a model for understanding the influence of lateral wall-fluid particle hydrodynamic 
and thermal interactions in determining the thermocapillary migration velocity. 

In this Stokes problem, the force of the continuous phase on the fluid particle can 
be divided into the forces from two fixed-fluid particle flow idealizations, one in 
which the tube wall is moving dragging fluid over the stationary fluid particle with 
no Marangoni force, and a second idealization in which the wall is fixed and the 
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surface temperature gradient drives a streaming, recirculating motion that propels 
the fluid particle t,owards the warmer fluid. The dragging force is described by a drag 
coefficient A,, and the thermocapillary lift or propulsion force is described by a lift 
coefficient A,. Each of these coefficients represents the ratio of the force in the 
idealization in the confined tube geometry divided by that in an infinite medium. The 
first idealization and the coefficient A, describe the hydrodynamic resistance of the 
wall on the forward motion of the particle. This coefficient increases sharply as the 
sphere to tube diameter ratio increases. The second idealization and the lift 
coefficient A, describe the thermal interaction between the wall and the particle. The 
lift coefficient increases as the ratio of the fluid particle to the continuous phase liquid 
conductivity decreases since in that limit more energy is conducted through the gap 
betwecn the fluid particle and the wall, and this heat flow intensifies the fluid particle 
surface temperature gradient. This increase is enhanced as the gap thickness 
decreases. The lift coefficient also describes a secondary wall-fluid particle 
hydrodynamic interaction apart from the resistance to forward motion as described 
by A,. Specifically, for the case in which the conductivities of the fluid particle and 
the continuous phase are equal, and therefore the thermal interaction is equal to 
zero, the lift coefficient A,  increases as the gap distance between the fluid particle and 
the wall decreases. The increase is ascribed to the increase in the back pressure which 
drives the recirculating motion of the Marangoni flow idealization, and which propels 
the fluid particle towards the warmer temperature. This back pressure increases with 
decreasing gap thickness because a higher back pressure is necessary to drive fluid 
through a narrowing gap. 

The ratio of A ,  to A, determines the migration velocity in the tube relative to that 
in an infinite medium. Calculations of this ratio indicate that, for a fixed gap 
thickness, the relative velocity increases as the fluid particle conductivity decreases, 
and that this increase in migration becomes more pronounced as the gap thickness 
decreases. Both t,hese results are attributable to the influence of the thermal 
interaction on A,. However, for a fixed, small conductivity ratio, the relative 
velocity decreases as the gap thickness decreases, and this reflects the predominance 
of the hydrodynamic retardation of the wall on the forward motion (as described by 
A,) over the migration enhancing thermal interaction and secondary back pressure 
hydrodynamic interaction (as given by A m ) .  

This work was supported in part by a grant from the Department of Energy, Office 
of Basic Energy Sciences (DE-FG02-88ER13820), to C.M. and a grant from the 
National Science Foundation to Z. D. 

Appendix 
Expressions for tfhe Gk, functions are given below. 
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( A  1) 
Expressions for the terms H i  are: 

2 H i ( t )  = (-  l)in-t"K,(Rt), xn! 

H i ( t )  = - (- l ) tn2Rtn-1Kl(Rt) ,  xn! 

1 2  H ; ( t )  = - ( -  1 ) ~  - t n - 2 [n(n - 1) K,(Rt) - (2n - 3)  RtK,(Rt)], 
xn ! 

The functions S(l, are defined as: 

S i ( r ,  0)  = r-n+lC;i( cos 0)  + dt cos (tr cos 0 )  [T i  ( t )  r sin Bl,(tr sin 0 )  Som 
+ T i( t ) (r  sin e)zIo(tr sin e)] , 

S i ( r ,  0)  = r-n+3C;;;(cos8)+ dtcos (trcos8)[T~(t)rsinBI1(trsin8) 1: 
+ T:(t) ( r  sin e)",(tr sin e ) ] ,  

[xi] = P,-,(cos 8) + t sin Osin ( t  cos 8)  

+ cos B cos (t cos e) ([ t ~ , ( t  sin e) 

- [ Ei] sin eio(t sin 0)  + sin 0 cos ( t  cos e) ([ si3 t ~ , ( t  sin 0 )  1 
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- lom dt { cos ( t  cos 0) ([ Fi] t2(sin2 0- cos2 O)I , ( t  sin 0) 

sin B(t2(sin2 e-cos2 e) ~ , ( t  sin e) + 2t sin ~ , ( t  sin e) )  +L:l 

+[Ti1 

- t cos 0 sin ( t  cos 0 )  ([ Fi] (2t sin eio(t sin 8) - ~ , ( t  sin 0)) 

sin 0(31,(t sin 0) + 2t sin ~ , ( t  sin 0)) 

where the functions Pn(t) (i = 1 , 2 , 3 , 4 )  are defined as 

TA(t) = [ (2  +RtS2)H3,(t)-R2H',(t)]/d, 

Ti ( t )  = [ ( 2  +RtB)H4,(t)-R2H2,(t)]/Ll, 

T3,(t) = [RQH',(t)-tH3,(t)]/d, 

T4,(t) = [RQHi( t ) - tH4, ( t ) ] /d .  

The variable SZ is given by I,(Rt)/ l ,(Rt) and 

Ll = R2tIo(Rt) -2RI,(Rt) -R2tI,(Rt) a. 
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